不同学科专业的授课教案可有自己的特色,教案是一种具有指导性的书面文体,你知道该怎么写吗,以下是莘莘范文网小编精心为您推荐的六年级比例的基本性质教案7篇,供大家参考。
六年级比例的基本性质教案篇1
教学目标:
1、 使学生理解并掌握比例的意义,认识比例的各部分名称,探究比例的基本性质,学会应用比例的意义和基本性质判断两个比是否能组成比例,并能正确的组成比例。
2、 培养学生的观察能力、判断能力。
教学重点:
比例的意义和基本性质
学法:
自主、合作、探究
教学准备:
课件
教学过程:
一:创设情境,导入新课
1、 谈话,播放课件,引出主题图
师:这节课我们上一节数学课,这节数学课有很多有趣的知识等待着同学们去探索和发现呢!同学们你们有信心接受挑战吗?
(播放视频,生观察,并说看到的内容)
师:看到这些画面你的心情怎么样?(激动、兴奋、骄傲、自豪……)
师:是啊,老师和你们一样,每当听到雄壮的国歌声,看见鲜艳的五星红旗,老师的心情也十分激动,国旗是我们伟大祖国的象征,是神圣的。
问:画面上这几面国旗有什么不同?(大小不一样)
师:虽然这几面国旗大小不一样,但是长和宽的比值都是一样的,这节课我们就来研究有关比例的知识。(板书:比例)
(课件出示主题图,让学生说出长和宽各是多少)
问:你能根据这些国旗的长和宽的尺寸,写出长与宽的比,并求出比值吗?请同学们先写出学校内两面国旗长与宽的比,并求出比值。(生动手写比、求比值)
二、引导探究,学习新知
1、比例的意义
(生汇报求比值的过程)
师:请同学们观察你求出的学校内两面国旗的比值,你有什么发现?(这两个比的比值相等)
师:这两个比的比值相等,我用“=”把这两个比连起来,可以吗?(可以)
师:从图上四面国旗才尺寸中你还能找出哪些比求出比值,也写成这样的等式呢?请同学们自己动笔试一试(生动手写比,求比值,写等式,并汇报)
师:指学生汇报的等式小结,像这样由比值相等的两个比组成的等式就是比例,谁能概括出比例的意义?(板书课题,生汇报,是板书意义)
问:判断两个比是否能组成比例,关键看什么?(关键看它们的比值是否相等)
(小练习,课件出示)
2探究比例的基本性质
(1)自学比例的名称
师:小结通过刚才的学习,我们理解了比例的意义,那么在比例中各部分名称是怎样的,各部分名称与各项在比例中的位置又有什么关系呢?打开书34页,自学34也上半部分,比例各部分的名称。(生自学名称,汇报,师板书名称)
(2)合作探究比例的基本性质
师:同学们,你们知道吗?在比例的内项和外项之间还存在着一个有趣的特性呢!你们想去发现这个特性吗?接下来就请同学们以小组为单位合作探究比例的基本性质。(板书:比例的基本性质) 课件出示小组合作学习提示,指名读
各小组派一名代表汇报合作学习发现的规律。
师:是不是所有的比例都具有这样的特性呢?分组验证课前写出的比例式。
师:问想一想,判断两个比能不能组成比例除了根据比例的意义去判断外还可以根据什么去判断?(生回答:根据比例的基本性质)
师:如果把比例改写成分数形式是什么样的?生回答。根据比例的基本性质,等号两边的分子和分母之间又有什么关系呢?生回答,师板书
三、巩固练习(见课件)
四、汇报学习收获
六年级比例的基本性质教案篇2
教学内容
教科书第48~50页例1、例2,课堂活动及练习十一1,2题。
教学目标
1.理解比例的意义,认识比例各部分的名称。
2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。
3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
教学重点
理解比例的意义和基本性质。
教学难点
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
教学准备
课件,扑克牌10张(2~10以及a),圆规一个。
教学过程
一、复习准备
(1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?
(2)求下面各比的比值,你发现了什么?
12∶16 34∶18 4.5∶2.7 10∶6
教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。
二、探究新知
1.提出问题
这节课我们在比的知识基础上,进一步学习新知识。
揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质
2.探究比例的意义
课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:
竹竿长26
影子长39
教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。
学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。
教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。
学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93
教师:这些都是比例。你能用自己的语言说一说什么是比例吗?
引导学生用自己的语言归纳比例的意义。(板书:比例的意义)
教师:2∶9和3∶6能组成比例吗?你是怎么知道的?
指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。
组织并指导学生完成书上第50页的课堂活动。
3.认识比例的各部分
教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。
指导学生看书后汇报。
教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。
学生找出后,随学生的汇报教师板书:
要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。
4.教学比例的基本性质
教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?
学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?
教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?
指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。
5.运用比例的基本性质判断两个比是否能组成比例
教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?
学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。
三、巩固提高
(1)说一说比和比例有什么区别。
讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。
(2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。
(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
(1)指导学生完成练习十一的第1题。
要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。
(2)学生独立完成练习十一的第2题,教师订正。
六年级比例的基本性质教案篇3
【教材分析】
?比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:
“2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:
(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;
(2)没有给学生想想的猜想和验证的空间。
【教学目标】
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
【教学重点】探索并掌握比例的基本性质。
【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。
【教学设想】:
1、教学情境的呈现
创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。
教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。
2、教学方式的选择
教育的真谛应该是促进人的发展,人的发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。
比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。
3、练习的设计
(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。
(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。
(3)如果a×2=b×4,则a:b=():(),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。
(4)猜猜我是谁?6:()=5:4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。
【教学预设】
一、认识比例各部分的名称
1、呈现:4:5和8:10
(1)认识吗?叫什么?
(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)
(3)求比值,判断两个比能否组成比例。
2、介绍比例各部分的名称
4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。
3、你能说出下面比例的内项和外项各是多少吗?
(1)1.4:=:5(2)=
二、探究比例的基本性质
1、猜数
呈现比例“12∶□=□∶2”。
(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……
(2)这样的例子举得完吗?
2、猜想
仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)
3、验证
(1)是不是所有的比例都有这样的规律呢,有什么好办法?
(2)你觉得应该怎样举例呢?
(3)合作要求
1)前后4个同学为一个小组;
2)每个同学写出一个比例,小组内交换验证。
3)通过举例验证,你们能得出什么结论?
4、小结
(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?
六年级比例的基本性质教案篇4
教学内容:第43页例4,完成“试一试”“练一练”和练习十的1~4题。
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重、难点:理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。
教学过程:
一、创设情境,教学比例的基本知识。
1、复习:
师:什么叫比例?下面每组中的两个比能否组成比例?出示:
1/3∶1/4和12∶9 1∶5和0.8∶4 7∶4和5∶3 80∶2和200∶5
学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4=12∶9 7∶4≠5∶3 1∶5=0.8∶4 80∶2=200∶5
2、认识比例各部分的名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3 :5 = 18 :30 学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3 :5 = 18 :30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。
二、教学例4
1、提问:你能根据图中的数据写出比例吗?
(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
2、学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
3、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组):
1/3∶1/4和12∶9; 1∶5和0.8∶4; 7∶4和5∶3; 80∶2和200∶5
学生验证。
⑵学生任意写一个比例并验证。
教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交*连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交*相乘,结果相等。
师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。
引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。
师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。
板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。
⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。
(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
读书p44页,勾画
5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
6、比例的基本性质的应用
(1)比例的基本性质有什么应用?
(2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。
a、先假设这两个比能组成比例
:让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
三、综合练习:
1、完成练一练
(1)学生尝试练习。
(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在( )里填上合适的数。
1.5:3=( ):4
12:( )=( ):5
先让学生尝试填写,再交流明确思考方法。
3、补充一组灵活训练题:
a、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?
b、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。
c、你能从3、4、5、8中换掉一个数,使之能组成比例吗?
四、全课小结:
同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。
能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?
五、课堂作业。
1、做练习十第1、3题
2、独立完成2、4题
板书设计:
比例的基本性质
3 :5 = 18 :30
内项
外项
6:4=3:2 4:6=2:3 4:2=6:3 3:6=2:4
3×4=6×2
a:b=c:d ad=bc
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
六年级比例的基本性质教案篇5
教学目标:
1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。
2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。
教学重、难点:
重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学准备:cai课件
教学过程:
一、复习、导入
1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?
2、 课件显示:算出下面每组中两个比的比值
⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]
二、认识比例的意义
(一)认识意义
1、 指名口答上题每组中两个比的比值,课件依次显示答案。
师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)
2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。
(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)
最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)
数学中规定,像这样的一些式子就叫做比例。(板书:比例)
[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]
3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?
(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)
5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?
(根据学生的回答,教师抓住关键点板书:两个比 比值相等)
同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
课件显示:表示两个比相等的式子叫做比例。
学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]
(二)练习
1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次
第二次
买练习本的钱数(元)
1.2
2
买的本数
3
5
(1)学生独立完成。
(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。
2、完成练习纸第一题。
一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。
⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?
[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]
3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?
(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)
4、教学比例各部分的名称
(1) 课件出示: 3 : 5
前项 后项
(2) 课件出示:3 : 5 = 18 : 30
内项
外项
(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?
课件出示:3/5=18/30
[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]
5、小结、过渡:
刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
三、探究比例的基本性质
1、课件先出示一组数:3、5、10、6
再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)
2、 独立思考,并在作业本上写一写。
学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根据学生回答板书: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引导发现规律
(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)
乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)
(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?
(3)学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]
4、验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。
⑵学生任意写一个比例并验证。
⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]
5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。
6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)
四、 综合练习
完成练习纸2、3、4
附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判断下面哪一个比能与 1/5:4组成比例。
①5:4 ② 20:1
③1:20 ④5:1/4
4、在( )里填上合适的数。
1.5:3=( ):4
=
12:( )=( ):5
[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]
五、全课总结(略)
六年级比例的基本性质教案篇6
教材分析
本课教学内容是课程标准人教版六年级32、33页的“比例的基本性质”。这部分内容是在学生初步理解比例意义的基础上教学的,通过教学,使学生认识比例的“项”以及“内项”和“外项”,理解并掌握比例的基本性质;让学生在尝试探索的过程中进一步培养比较、概括的能力,发展符号意识。
学情分析
本班学生基础能力中等,平时上课发言的学生不是很多,对于这个比例的基本性质的学习是第一次的接触,但本节课难度不是很大,学生领会的能力相信还是可以的。
教学目标
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
教学重点和难点
理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质
教学过程
(一)、复习导入
1、我们已经认识了比例,谁能说一下什么叫比例?
2、应用比例的意义判断下面的比能否组成比例。
0.5:0.25和0.2:0.4∶和12∶91∶5和0.8∶4;
7∶4和5∶380∶2和200∶5
(一是看两个比的比值是否相同,二是看他们化成最简比是否相同)
3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)
板书:比例的基本性质
(二)、探究新知
1、教学比例各部分的名称.
同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第34页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,
板书:
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
外项内项学生认一认,说一说比例中的外项和内项。
如:
2、教学比例的基本性质。
(1)教师:比例有什么性质呢?现在我们就来研究。
(板书:比例的基本性质)
学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:
两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
(2)教师:你发现了什么,
两个外项的积等于两个内项的积
是不是所有的比例都存在这样的特点呢?
学生分组计算前面判断过的比例。
(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)
(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。
(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?
指名学生改写2.4:1.6=60:40(=)
这个比例的外项是哪两个数呢?内项呢?
当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积
怎么样?(边问边画出交叉线)
(6)强调:如果把比例写成分数的形式,比例的基本性质就是等号两端分子和分母分别交叉相乘的积相等。以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。
(三)、课堂作业设计
1、应用比例的基本性质判断3:4和6:8能不能组成比例。
2、先应用比例的意义,再用比例的基本性质来判断下面哪组中的两个比可以组成比例。
6:9和9:12
0.5:0.2和:
1.4:2和7:10
(四)、拓展练习
下面的四个数可以组成比例吗?把组成的比例写下来。(能写成几组就写几组)
5、8、15和24
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?通过以上学习,大家一定进一步了解比例了吧?
六年级比例的基本性质教案篇7
教学内容:比例的意义、基本性质,比例各部分名称,组比例。
教学目标:
1. 使学生理解比例的意义,认识比例各部分的名称。
2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。
教学重点:比例的意义和基本性质。
教学难点:理解比例的基本性质。
教学过程:
一、 复习
1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。
2、 求下面各比的比值,哪些比的比值相等?
12:16 : 4.5:2.7 10:6
二、 新授
提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。
1、 比例的意义
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
从上不中可以看到,这辆汽车:
第一次所行台的路程和时间的比是____;
第二次所行驶的路程和时间的比是____;
这两个比的比值各是多少?它们有什么关系?
(1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。
板书:80:2=200:5 或 =
师:这样的式子,我们给它一个名字叫做比例。
(2) 口答
A、把复习第2题中两个比值相等的比用等号连起来。
B、用等号连接起来的式子叫做什么?
C、根据刚才的回答,你能说出什么叫比例吗?
(3) 小结。
A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。
B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。
(4) 练习,课本第10页做一做。
2、 比例的基本性质。
(1) 比例各部分的名称。
引导学生观察黑板上的例题:80:2=200:5
并自学课本
提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?
(2) 说出下面各比例的外项和内项?
6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8
(3) 计算:上面比例中的外项积与内项积。
(4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?
师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?
(5)你能得出什么结论?
三、 巩固练习
1、 完成第2页的做一做。
2、 完成第3页的做一做第1题。
四、 总结
1、 比例的意义和基本性质是什么?
2、 怎样判断两个比能否组成比例?
五、 作业
1、 完成练习四的第1-3题。
会计实习心得体会最新模板相关文章: