莘莘范文网 >教师总结

分数除法三教案5篇

教案可以作为教师的专业发展工具,帮助他们不断提高教育水平,教案的目的是帮助教师有条不紊地组织教学过程,确保教学的质量和效果,下面是莘莘范文网小编为您分享的分数除法三教案5篇,感谢您的参阅。

分数除法三教案5篇

分数除法三教案篇1

教学目标:

1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

教学重点:

理解分数与除法的关系

教学难点:

会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题

教具准备:

课件

教学过程:

一、导入

1.出示情境图:把4块饼平均分给4个小朋友。

2.提问:你能提出哪些问题?

二、新课

1.教学例6

把刚才呈现的题目改为:把3块饼平均分给4个小朋友。

提问:你能提出什么问题?怎样列式?

引导:把3块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?

结合学生的回答,指出:每人分得的不满1块,结果可以用分数表示。

提出要求:那么,可以用怎样的分数表示3÷4的商呢?请大家拿出3张同样的圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?

学生操作,了解学生是怎样分和怎样想的。

组织交流,你是怎么分的?

小结:把3块饼平均分给4个小朋友,每人分得4/3块。完成板书。

把题目改为:把3块饼平均分给5个小朋友,每人能分得多少块? 学生口述算式

提问:3除以5,商是多少?怎样用分数表示?小组交流。

2. 总结归纳

谈话:请大家观察上面两个等式,你发现分数与除法有什么关系?

板书课题 被除数÷除数=被除数/除数

提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?

板书 a÷b=a/b

讨论:b可以是0吗?

3. 教学试一试。

出示试一试,学生尝试填空。

小组交流:你是怎样想的?

口答:把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?

指出:两个数相除,得不到整数商时,可以用分数表示。

4. 做练一练的第1题 学生填写后,引导比较:上下两行题目有什么不同?

5. 练一练第2题 学生独立填写,要求说说填写时是怎样想的。

三、练习

1.练习八第1题

2.第2题

3.第3题学生看图填写后,可让学生说一说是怎样想的。

4.第4题

学生填写后,提问:这道题中的两个问题有什么不同?

5.第5题

让学生联系分数的意义填空,再引导学生根据分数与除法的关系列算式,并写出得数。

四、总结

提问:今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?

分数除法三教案篇2

教学内容:

分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。

教学目标:

使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。

教学重点:

分数除以整数的计算方法 。

教学难点:

除转化为乘和道理。

教学过程:

一、 复习

1.口答下面各题的倒数。

2 、1、0.4

2.根据一个乘法算式写出两个除法算式。

3×15=45 125×8=1000

二、 新授

揭示课题:分数除法

1.分数除法的意义和计算法则

(1) 出示25页的月饼图。

(2) 引导学生回答问题

1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?

板书:×4=2 (块)

2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?

板书:2÷4=(块)

3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?

板书:2÷=4(人)

(3) 让学生观察比较(板书的)3个式子的已知数和得数。

明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。

第二算式是已知两个因数的`积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。

小结:分数除法的意义。

强调:分数除法的意义和整数除法的意义相同。

(4) 练习:教科书第25页"做一做。

2.分数除以整数的计算方法。

(1)出示例子:把米铁丝平均分成2段,每段长多少米?

(2)启发学生分析数量关系。(画线段图表示)

米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。

板书 解法1:÷2==(米)

使学生明白。

1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。

2)这种计算方法有限制条件的,分子必须能被整数整除。

还有其它的解法吗?

引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。

板书 解法2:÷2=×=(米)

(3) 小结:分数除以整数的计算方法。

板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。

强调。

1)被除数不变;

2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;

3)0不能做除数,0没有倒数;

4)这种计算方法在一般情况下都可以进行,应用普遍。

5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。

三、 巩固练习

练习七第1、3题。

四、 作业

练习七第2、4、5、6题

五、 课外思考

练习七第7题。

分数除法三教案篇3

教学内容:

49~50页的内容及练习十二1~12题。

教学目标:

1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学难点:

理解可以用分数表示两个数相除的商。

教具准备:

课件

教学过程:

一、复习导入

1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?

3.引入:5除以9,商是多少?板书:5÷9

如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

二、新课讲授

1.教学例1:出示题目

(1)列出算式。(板书:1÷3=)

(2)讨论:1除以3结果是多少?你是怎样想的?

(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。

板书:1÷3= 1/3(个)

2.教学例2:出示题目

(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

(2)口述方法及每份分得的结果,教师总结几种不同的分法。

(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。

由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。

学生相互说说 表示的意义。

3.教学分数与除法的关系。

(1)观察1÷3= 3÷4= 这两道算式,

想一想

①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?

②用分数表示商时,除式里的被除数,除数分别是分数里的什么?

③分数与除法的关系是怎样的?

(2)总结三点

①分数可以表示除法的商。

②在表示除法的商时,要用除数作分母,被除数作分子。

③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式

(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示

板书:a÷b=a/b (b≠0)

(4)这里的b能为0吗?为什么?

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)

(5)分数与除法有区别吗?区别在哪里?

(分数是一种数,但也可以看作两个数相除,除法是一种运算)

4.教学例3:出示题目

(1)列出算式。板书:7÷10

(2)怎样计算?。7÷10=

三、巩固练习。

1.做一做:独立完成,集体订正。

2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。

第3、4题:做在书上,集体订正。

第5、6题:独立完成,订正时说一说是怎么想的。

3.作业:练习十二7----11题,选作12题。

四、课堂小结

这节课学习了什么知识,你有哪些收获?

板书设计:

分数与除法

例1:1÷3= 1/3(个)

例2:3÷4=3/4 (个)

例3:7÷10= 7/10

分数除法三教案篇4

【学习目标】

1、知道分数除法的意义,掌握分数除以整数的计算法则。

2、动手操作,通过直观认识理解整数除以分数,总结法则,正确计算。

3、培养观察、比较、分析的能力和语言表达能力,提高计算能力。

【学习重难点】

1、重点是理解算理,正确总结、应用计算法则。

2、难点是理解整数除以分数的算理。

【学习过程】

一、复习

1、复习整数除法的意义是什么?_______________________________________________

2、根据已知的乘法算式:5×6=30,写出相关的两个除法算式。___________________

2、口算下面各题:

1323843151×3 × × × ×6 × 543839412115

二、探索新知

1、认真阅读,仔细观察例1,想一想左右两边的题组有什么不同?_________________

右边的题组是怎样得来的?_________________________________________________

2、讨论:右边的两个分数除法算式是怎样求出得数的?___________________________

思考:分数除法的意义是什么?_____________________________________________

数,求另个一个因数。(都是乘法的逆运算。)

3、巩固分数除法意义的练习:p28“做一做”

4、阅读例2题目,自己拿出一张纸试着折一折,涂一涂,看你能够想到几种不同的折法?

对照不同的折法,列式计算,注意它们的计算过程以及算理。

5、比较例2出现的两种计算方法的异同?你觉得哪种算法的适用范围更广?为什么? _________________________________________________________________

6、阅读例2的第二个问题,独立列式计算,并用折纸来验证自己算对了没有? _________________________________________________________________

7、根据自己的折纸实验和算式,说一说分数除以整数要如何计算?

________________________________________________________________

分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、知识应用:独立完成下面各题,组长检查核对,提出质疑。

6115559÷3 ÷3 ÷20 ÷5 ÷10 ÷6 72168313

四、层级训练:1、巩固训练:p32练习八第1、2题;2、拓展提高:p32练习八第3题

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法三教案篇5

设计说明

分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

2.重视对相关概念、性质及某些知识间相互关系的复习。

教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

3.重视对学生解决问题能力的培养。

教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

课前准备

教师准备ppt课件

教学过程

⊙整理复习

1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)

(1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。

×=×=×18=

÷=÷=21÷=

÷=÷=×=

①复习分数乘法的计算方法。

(分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)

②复习分数除法的计算方法。

[甲数除以乙数(0除外)等于甲数乘乙数的倒数]

③生独立计算。

④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?

(乘法与除法是互逆运算)

(2)结合×和×18复习分数乘法的意义。

(一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的简便运算,与整数乘法的意义相同)

(3)结合÷和21÷复习分数除法的意义。

(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)

(4)复习分数四则混合运算。

①分数四则混合运算的运算顺序是怎样的?

(与整数四则混合运算的运算顺序相同)

②下面各题怎样简便就怎样算,并说一说算理。

+++

15×

+3÷

3.7×+1.3÷

÷

0.5×

2.复习倒数的意义及相关知识。

(1)什么叫倒数?0为什么没有倒数?

(乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)

(2)写出下面各数的倒数。

51

(3)判断下面的说法是否正确。

①一个真分数的倒数一定比这个真分数大。()

②一个数乘分数的积一定比原来的数小。()

③一个数除以分数的商一定比原来的数大。()

3.复习比的意义及相关知识。

(1)(出示课件)说出下面每个比的前项、后项。

2∶50.6∶0.3

(2)结合上题,复习比的意义及比的各部分名称。

(两个数相除又叫做两个数的比,比号前面的数叫做比的.前项,比号后面的数叫做比的后项)

(3)复习比值的意义及求法。

(比的前项除以比的后项,所得的商叫做比值)

(4)复习比与分数、除法的关系。

(根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)

会计实习心得体会最新模板相关文章:

用分数解决问题教案7篇

百分数2教案优秀8篇

六年级分数的乘法教案6篇

分数和小数的互化教学反思5篇

六年级上册语文第三单元作文教案5篇

小学三体育教案5篇

三年级下册《燕子》教案5篇

小学三年级太阳教案5篇

沪教版三年级数学上册教案5篇

三年级下册全英语教案5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    125483

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。