无论是为了完成什么样的教学任务,我们都是需要好好制定教案的,不管是什么学科的老师,都要认真对待写教案这件事,莘莘范文网小编今天就为您带来了五年级方程教案5篇,相信一定会对你有所帮助。
五年级方程教案篇1
教学目标:
1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题.
2,学会找出生活问题中相等的数量关系,正确列出方程.
3,培养学生根据具体情况,灵活选择算法的意识与能力.
4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感.
教学重点:用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题.
教学难点:分析问题中的等量关系,并会列出方程解答.
教学准备:多媒体课件.
教学过程:
一,知识回顾:
1,解下列方程.
x+2x=147 y-34=71
2,根据下面叙述说说相等关系,并写出方程.
①公鸡x只,母鸡30只,是公鸡只数的2倍.
②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只.
3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密.小军发现……小华发现……小刚提出……
(足球上黑色的皮都是五边形,白色的皮都是六边形的.黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮 )
让学生独立做,集体订正时,(板书线段图).
二,合作探究:
1,教学例1(媒体出示教材情景图).
"足球上黑色的皮都是五边形,白色的皮都是六边形的.白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮 "
(1)审题,寻找解决问题的有用信息.
提问:"例题与复习题有什么相同的地方 " "有什么不同的地方 "
教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题.今天我们学习用方程解答这类问题.
教师板书:稍复杂的方程
(2)分析,找出数量之间的相等关系(教师板书线段图讲解)
看图思考:白色皮和黑色皮有什么关系
学生小组讨论,汇报结果.
可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2-白色皮的块数=4
黑色皮的块数×2=白色皮的块数+4
(3)同桌讨论怎样列出方程.
(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系.允许学生列出不同的方程.
板书学生的方程并选择2x-4=20讨论它的解法.
学生小组讨论解法.
汇报交流板书:
解:设共有x块黑色皮.
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
检验:(引导先生口头检验)
答:共有12块黑色皮
(5)学生选择其余的方程解答.
2,变式练习.
(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程 (课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答.
(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易.
3,引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示.
②分析,找出数量之间的相等关系,列方程.
③解方程.
④检验,写出答案.
三,巩固应用
1,只列式不计算.(课件出示)
①图书室有文艺书180本,比科技书的2倍多20本,科技书x本.
②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只.
③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只.
④一个等腰三角形的周长是86厘米,底是38厘米.它的腰是x厘米.
2,学生独立完成,集体汇报交流
①北京故宫的面积是72万平方米,比广场面积的2倍少16万平方米.广场的面积是多少万平方米
②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米.大洋州的面积是多少万平方千米
③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km
④共有1428个网球,每5个装一筒,装完后还剩3个.一共装了多少筒
3,拓展提高.
①甲乙两数的和是90,甲数是乙数的2倍.甲乙两数各是多少
②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少
四,全课总结
今天这节课你学到了什么知识
板书设计:
先把2x看作一个整体
五年级方程教案篇2
教学目标:
1.系统地掌握有关用字母表示数、方程的基础知识,并用方程解决生活中的实际问题。
2.培养和提高学生的学习能力。
教具准备:
自制幻灯片课件。
教学过程:
一、创设情境。
1.(课件出示)学校买来个9足球,每个a元,买来b个篮球,每个58元。
2.让学生根据出示的信息,提出数学问题。
学生可能提出以下问题
(1)9个足球多少钱?
(2)b个篮球多少钱?
(3)篮球的单价比足球的单价多多少钱?
(4)篮球和足球一共多少钱?
3.学生说出怎样表达这些问题的结果。(教师板书)
4.引导学生观察黑板上的式子,看一看有什么特点?
二、系统整理
1.提问:我们除了学过用字母标示数量关系外,还学过用字母表示什么?
(让学生以小组为单位,合作整理学过的运算定律和计算公式。)
2.引导学生交流小组整理的结果。教师板书
a+b=b+av=sh
a+(b+c)=(a+b)+cv=abh
a×b=b×cs=ab
a×(b×c)=(a×b)×cs=ah
a×(b+c)=a×b+a×c……
运算定律计算公式
3.在书写数字与这字母相乘、字母与字母相乘时,应注意什么?
完成84页上做一做的内容。
4.启发学生谈一谈,用字母表示数、表示数量关系有什么作用?
5.在用字母表示数的过程中,我们黙认“x”表示什么样的数?
6.让学生填空:含有未知数的等式叫做( )
求“x”值的过程叫做( )
7.让学生说说解方程的依据是什么?
8.学生解方程并订正结果。
9.通过列方程和解方程,可以解决很多生活中的实际问题。下面请同学们看屏幕。
10.(课件出示)学校组织远足活动。计划每小时走3.8千米,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?
11.学生独立解决问题,教师课堂巡视,了解学生解决问题情况。
12.班内交流结果。并让学生将解题过程演板。
13.谈一谈在用方程解决问题的过程中,应注意什么?
三、归纳小结。
1.让学生说一说这节课我们对哪项知识做了复习和整理?
2.师:有一部分同学在解题的过程中,不习惯用方程解,老师建议大家,为了更好的与中学接轨,要多尝试用方程解,而且你一定会领悟到方程得简明和方便。
四、实践应用。
1.完成85页练习十五的习题。
2.填空
(1)小华每分钟跑a米,6分钟跑( )米。
(2)三个连续的偶数,中间一个是m,另外两个是( )和( )。
(3)用字母表示三角形的面积计算公式是( )。如果a=4厘米,b=3厘米,则三角形的面积是( )。
(4)老王今年a岁,小林今年(a-18)岁,再过18年,他们相差( )岁。
(5)一堆煤,有a吨,烧了6天。平均每天烧b吨,还剩( )吨。
2、判断
(1)含有未知数的式子叫方程。( )
(2)方程一定是等式,等式一定是方程。( )
(3)6x=0是方程。( )
(4)因为a×6可以写成a·6,所以7×6可以写成7·6。( )
3、下面的式子中,哪些是方程?
(1)5x (2)6x+1=6
(3)15-3=12 (4)4x+1
4、解方程
2x+9=27 x-0.5= 8+0.3x=14
8x-3×9=37 22.3x+11x=66.6 x-x=12
(要求学生以竞赛的形式进行计算)
5、趣味数学城
(1)、一只青蛙一张嘴,两只眼睛四条腿。
两只青蛙两张嘴,四只眼睛八条腿。
三只青蛙三张嘴,六只眼睛十二条腿。
四只青蛙四张嘴,八只眼睛十六条腿。
n只青蛙( )张嘴,( )只眼睛( )条腿。
五年级方程教案篇3
教学内容
列方程解应用题
教学目标
1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。
2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。
3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。
教学重点
列方程解答数量关系稍复杂的两、三步应用题。
教学难点
形如:ax+bx=c的数量关系
教学理念
培养学生自主探究、合作交流的学习方式。提高学生的检验能力。
教师活动过程
学生活动过程 备注
一、复习铺垫
1练习二十一t1
学生回答
2根据条件说出数量关系式:
果园里的桃树和梨树一共有168棵。
果园里的桃树比梨数多84棵。
桃树棵数是梨树的3倍。
学生回答数量关系式
3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!
学生自主编题,口头说题
4依据学生回答,教师出示题目。
a.根据条件(1)、(2)编题:果园里梨树和桃树一共有168棵,桃树比梨树多84棵。梨树和桃树各有多少棵?
b.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)
c.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)
教师巡视,了解情况。
二.探究新知
1.学生尝试例1
引导学生画出线段图
集中反馈:生说师画图
2.教师组织学生汇报
学生介绍算术解法时,教师引导学生画线段图理解数量间的关系。
学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。
3.小组讨论。
解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?
用方程解,设哪个数量为x比较合适?用什么数量关系式来列式呢?
4.学生独立完成想一想。
这一题与例1有什么相同的地方?有什么不同的地方?
明确三点:1、一般设一倍数为x 。2、把几倍数用含有x的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。
5完成课本94页练一练
指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?
三、小结
本课学习了什么内容?你有哪些收获?
四、作业
五年级方程教案篇4
教学目标:
1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。
2、会用方程表示简单的等量关系,会列方程解决简单问题。
3、感受式与方程在解决问题中的价值,培养初步的代数思想。
教学重点:
明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。
教学难点:
找等量关系式,用方程解决实际问题。
教学过程:
一、导入
我们都记得这首儿歌
一只青蛙一张嘴,两只眼睛四条腿;
两只青蛙两张嘴,四只眼睛八条腿;
请你来接下句
三只青蛙xxxxxxxxxx;
五只青蛙呢?
n只青蛙呢?
一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。
二、进行复习
1、用字母表示数
(1)同学们想一想,在数学中有哪些地方常用字母来表示?
生列举:数量关系(路程、速度、时间即s=vt)
计算公式(长方形面积计算公式:s=ab圆柱的体积公式:v=sh等)
运算定律(加法结合律:a+b+c=a+(b+c)等)
(2)请同桌之间相互举两个这样的例子。
(3)你们知道为什么用字母表示数吗?
(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。
(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?
算法有两种:其一:算术方法:160÷(5+3)=20
依据:总插秧数量÷时间=单位时间量
其二:列方程:x(5+3)=160
依据:单位时间量×时间=总插秧数量
观察比较:以上两种解法有哪些相同点和不同点?
相同点:都是根据数量间的相等关系列式。
不同点:解法一:以已知推出未知,是算术法。
解法二:把未知数用x表示,列出含有未知数的等式,即方程。
同学们想一想,等式和方程有什么联系和区别?
方程有哪些性质呢?(等式、含有未知数)
2、方程
(1)判断下列哪些是方程(说明理由)
7+8=3×5 4a+5b a+12=89
4x=y 3+100>25+y 6+x=0.5×3
(2)你会解方程吗?从中选择一个试一试。
(3)如何判断方程的解是否正确?
(4)列方程解应用题的解题步骤是怎样的?
讨论后得出:
①弄清题意,找出未知数,并用x表示;
②找出应用题中数量之间的相等关系,列方程;
③解方程;
④检验,写出答案。
3、列方程解决问题
(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。
请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?
引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。
(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。
(3)练习
①练一练1
②师展示习题:说出下面每组数量之间的相等关系。
(1)女生人数,男生人数,全班人数;
(2)苹果的重量,梨的重量,梨比苹果少的重量。
(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?
(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?
③课本练一练5
三、小结
说一说你今天的收获在哪里?
五年级方程教案篇5
教学目标:
(1)学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学习习惯的培养。
教学重、难点:
“方程的解”和“解方程”之间的联系和区别;利用天平平衡的道理理解比较简单的方程的方法。
教学过程:
一、回顾旧知,引出课题(课件出示天平)
师:老师在天平的左边放了一杯水,杯重100克,水重x克,一杯水重多少?
生:(100+x)克
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)
师:请你根据图意列一个方程。
生:100+x=250(课件显示:100+x=250)
师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)
[设计意图:从复习天平保持平衡的道理入手,引出课题,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。]
二、探究新知
1.认识“方程的解”和“解方程”的两个概念
师:(出示课件)那你猜一猜这个方程x的`值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150
生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出x=150
师:xxx同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。
师:你能根据操作过程说出等式吗?
生:100+x-100=250-100
师:这时天平表示未知数x的值是多少?
生:x=150
师:是的,xxx同学的想法是正确的,方程左右两边同时减100,就能得出x=150。我们表扬他。
师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。
师:指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)
师:
100+x=250
100+x-100=250-100
指着方框说:“这是求方程的解的过程,叫解方程。
师:在解方程的开头写上“解:”,表示解方程的全过程。
师:同时还要注意“=”对齐。
师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的?
(学生独立思考,再在小组内交流。)
师:谁来说说你想法?
生1:“解方程”是指演算过程
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]
2.教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]
师:四人小组讨论方程左右两边为什么同时减3?
[学生独立思考,再在小组内交流。]
师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。
生:x+3=9(板书:x+3=9)
师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。
师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩x,而天平保持平衡。
生:天平左右两边同时拿走3个方块,使天平左边只剩x,天平保持平衡。师:根据操作过程说出等式?
生:x+3-3=9-3(板书:x+3-3=9-3)
师:这时天平表示x的值是多少?
生:x=6(板书:x=6)
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩x。
生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?
生:验算。
师:对了,验算方法是什么?
生:将x=6代入原方程,看方程的左边是否等于方程的右边。
(板书:
验算:方程的左边=6+3=9
方程的右边=9
方程的左边=方程的右边
所以,x=6是方程的解。)
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。
[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]
3.练习
师:现在老师看看同学们对于解方程掌握得怎么样。
(1) 判断题
a. x=3是方程5x=15的解。( )
b. x=2是方程5x=15的解。( )
(2) 考考你的眼力,能否帮他找到错误所在呢?
x+1.2=4 x+2.4=4.6
x+1.2-1.2=4-1.2 =4.6-2.4
x=2.8 =2.2
(3) 填空题
x+3.2=4.6
x+3.2○( )=4.6○( )
x=( )
(4)将课本59页做一做的第1题的左边一小题写在单行纸上。
[设计意图:游戏练习形式有趣,有利于激发学生的学习兴趣,活跃课堂气氛。让学生在轻轻松松中,及时有效地巩固强化概念。]
4.小结:解含有加法方程的步骤。(口述过程)
三、巩固延伸
师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)
生:
解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩x,方程左右两边相等。
c)求出x的值。
d)验算。
四、全课小结
1、通过今天的学习,同学们有哪些收获?
2、以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
3、对老师的表现进行评价。
[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。]
[板书设计]
解方程
例1:书本图
x+3=9 验算: x-2=15
解:x+3-3 =9-3 方程左边= 6+3=9 解: x-2+2=15+2
x=6 方程右边= 9 x=17
方程左边=方程右边
所以,x=6是方程的解。
会计实习心得体会最新模板相关文章: